Міністерство освіти і науки України Національний технічний університет «Харківський політехнічний інститут» Мішкольцький університет (Угорщина) Магдебурзький університет (Німеччина) Петрошанський університет (Румунія) Познанська політехніка (Польща) Софійський університет (Болгарія)

ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ: НАУКА, ТЕХНІКА, ТЕХНОЛОГІЯ, ОСВІТА, ЗДОРОВ'Я

Наукове видання

Тези доповідей ХХІV МІЖНАРОДНОЇ НАУКОВО-ПРАКТИЧНОЇ КОНФЕРЕНЦІЇ

У чотирьох частинах Ч. IV

Харків 2016

ББК 73 I 57 УДК 002

Голова конференції: Сокол Є.І. (Україна).

Співголови конференції: Торма А. (Угорщина), Марку М. (Румунія), Стракелян Й. (Німеччина), Лодиговськи Т. (Польща), Герджиков А. (Болгарія).

Інформаційні технології: наука, техніка, технологія, освіта, здоров'я: Тези доповідей XXIV міжнародної науково-практичної конференції, Ч.IV (18-20 травня 2016р., Харків) / за ред. проф. Сокола Є.I. – Харків, НТУ «ХПІ». – 371 с.

Подано тези доповідей науково-практичної конференції за теоретичними та практичними результатами наукових досліджень і розробок, які виконані викладачами вищої школи, науковими співробітниками, аспірантами, студентами, фахівцями різних організацій і підприємств.

Для викладачів, наукових працівників, аспірантів, студентів, фахівців.

Тези доповідей відтворені з авторських оригіналів

ББК 73 © Національний технічний університет «Харківський політехнічний інститут», 2016

3MICT

Секція 19. Сучасні проблеми гуманітарних наук	4
Секція 20. Управління соціальними системами і підготовка кадрів	60
Секція 21. Інформатика і моделювання	111
Секція 22. Електромагнітна стійкість	189
Секція 23. Менеджмент, інвестиційні та інноваційні процеси у промисловості та народному господарстві	231
Секція 24. Актуальні проблеми розвитку інформаційного суспільства в Україні	291
Секція 25. Страховий фонд документації: актуальні проблеми та методи обробки і зберігання інформації	307
Секція 26. Математичні моделі і інформаційні технології в економіці	319
Секція 27. Комп'ютерний моніторинг і логістика	335
Секція 28. Міжнародна технічна освіта: тенденції та розвиток	348

ABOUT THE CHOICE OF PHASE-SPACE COORDINATES FOR DESCRIPTION OF THE PRODUCTION SYSTEMS WITH IN-LINE TYPE OF PRODUCTION Pihnastyi O.M., Tubychko K.V. National Technical University «Kharkiv Polytechnic Institute», Kharkiv

A key issue in the construction of the PDE-model production lines is the choice of the coordinate system. A common approach is to use as a variable that defines the place of processing of work subject to the process flow, <u>value</u> S(\$) transferred technology resources on the subject of work [1], $S \in [0, S_d]$ ($S_d(\$)$ - the production cost of manufacturing), the effective time of processing the object of labor τ_m (hour), $\tau_m \in [0, \tau_M]$ ($\tau_M = \sum_{m=1}^M \Delta \tau_m$ (hour) - general effective the time of object of labor [1],

 $\Delta \tau_{m}$ - average time labor object processing on m manufacturing operation) or the degree of work in progress product x [1], $x \in [0,1]$. For the object of labor, past treatment for m operation, you can record $x = \frac{\tau_{m}}{\tau_{M}} = \left(\sum_{k=1}^{m} \Delta \tau_{k} / \sum_{k=1}^{M} \Delta \tau_{k}\right)$. For each

processing time $\tau_m = \sum_{k=1}^m \Delta \tau_k$ one correspondence with the value of resources $S_m = S(\tau_m)$, migrated for object of labor, and the total time $S_d = S(\tau_M)$. Thus, the

degree of incompleteness of making an article x It can be determined through the time of processing τ or the value of costs incurred $S = S(\tau)$ for object of labor. It is advisable to be the generalized technological resources for modeling industrial of production line use dimensionless variable $x = \frac{S_m}{S_M}$, determining the position of the object of labor in the process flow [2], $x \in [0,1]$. If you enter the density function of objects of labor $\rho(t, x)$ able x in the moment of time t, the total number of work items that are in various stages of readiness is the value [3:

W(t) =
$$\int_{0}^{1} \rho(t, x) dx$$
, $x \in [0, 1]$

Literature:

1. Пигнастый О. М. О новом классе динамических моделей поточных линий производственных систем / О. М. Пигнастый // Научные ведомости Белгородс-кого государственного университета. Белгород: БГУ. - 2014. - № 31/1. - С. 147-157

2. Berg R. Partial differential equations in modelling and control of manufacturing systems / R. Berg. – Netherlands, Eindhoven Univ. Technol., 2004. – 157 p.

3. Пигнастый О.М. Статистическая теория производственных систем / О.М.Пиг-настый. - Харків: ХНУ, 2007. - 388 с.

Наукове видання

ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ: НАУКА, ТЕХНІКА, ТЕХНОЛОГІЯ, ОСВІТА, ЗДОРОВ'Я

Тези доповідей ХХІV МІЖНАРОДНОЇ НАУКОВО-ПРАКТИЧНОЇ КОНФЕРЕНЦІЇ У чотирьох частинах Ч. IV

Укладач

Відповідальний секретар

проф. Лісачук Г.В.

Кубрак К.М.

Формат 60×86 /16. Ум. друк. арк. 19.4 Наклад 150 прим.

Надруковано у ТОВ «Планета – Принт» 61002, м. Харків, вул. Фрунзе, 16 Свідоцтво № 24800170000040432 від 21.03.2001 р.