получены синтетические сплавы, соответствующие по химическому составу сплавам АК9 и АК9М2 (ГОСТ 1583-93). Исследованы механические и технологические свойства синтетических сплавов. Результаты проведенных испытаний показали, что сплавы, синтезированные из АМК, не уступают по механическим и технологическим свойствам сплавам, полученным по традиционной технологии сплавления алюминия с кристаллическим кремнием. При этом предел прочности и относительное удлинение синтетических сплавов, полученных из АМК на основе системы AI-SiO₂, выше на 6,5–20% и 47–68%, соответственно, по сравнению со сплавами, полученными по традиционной технологии сплавления алюминия с кристаллическим кремнием.

Разработана технологическая схема синтеза высококремнистых лигатур с содержанием кремния свыше 25 % мас. из АМК системы Al-SiO₂ с использованием лома сплавов на основе алюминия и формовочного кварцевого песка.

УДК. 536:669:621.762

Е. Г. Афтандилянц, К. Г. Лопатько

Национальный университет биоресурсов и природопользования Украины, г. Киев

ТЕРМОДИНАМИКА ФАЗОВЫХ ПРЕВРАЩЕНИЙ МЕТАЛЛИЧЕСКИХ НАНОЧАСТИЦ

Закономерности фазовых превращений в материалах определяются, в основном, двумя интегральными факторами - изменением свободной энергии системы, определяющим последовательность структурных состояний, и кинетикой процесса, коротая, характеризуется скоростью зарождения центров новых фаз и их роста.

Свободная энергия металлических материалов состоит из свободных энергий их объемов, поверхности, дефектов строения (вакансии, дислокации и дефекты упаковки), деформаций и напряжений, изменения химического состава и растворения примесных элементов, электрического заряда и магнитного поля.

Вклад поверхности в изменение свободной энергии материала определяется его формой и размером и, соответственно, увеличивается и уменьшаться

при положительном и отрицательном значении радиуса кривизны. Учитывая, что на поверхности одного нанообъекта радиус кривизны может принимать как положительное, так и отрицательное значение, даже в пределах одной наночастицы на различных ее участках возможна реализация фазовых превращений как при пониженных, так и повышенных, относительно массивного материала, температурах.

Правило фаз Гиббса связывает число степеней свободы системы с числом компонентов и внешних параметров, определяющих состояние системы и для массивных материалов формулируется следующим образом: число степеней свободы C системы, на которую влияет N независимых нехимических факторов, равно числу компонентов K минус число фаз Φ плюс число независимых переменных N:

$$C = K - \Phi + N, \tag{1}.$$

При учете влияния только давления и температуры правило фаз Гиббса записывают следующим образом:

$$C = K - \Phi + 2, \tag{2}.$$

Диспергирование материала приводит к увеличению энергии Гиббса и изменению растворимости в нем элементов, что аналогично влиянию температуры и давления. Правило фаз Гиббса для дисперсных систем имеет следующий вид:

$$C = K - \Phi + 3, \tag{3}$$

т.е. число степеней свободы дисперсной системы, на которую влияют давление и температура, равно числу компонентов минус число фаз плюс 3.

В процессе фазовых превращений, в зависимости от величины свободных энергий исходной и образующейся нанофаз, возможно понижение, повышение и отсутствие изменения температур фазовых равновесий нанообъектов относительно идентичных массивных материалов.

Равновесие фаз в массивном материале наблюдается при равенстве их свободных энергий и характеризуется температурой равновесия. В случае, когда при переходе из массивного в наноразмерное состояние, увеличение свободной энергии исходной нанофазы 1, полностью наследуется, образующейся в результате фазового превращения нанофазой 2 наблюдается равенство температур фазового равновесия массивного материала и нанообъектов из того же материала.

Если, при переходе массивного материала в наноразмерное состояние, увеличение свободной энергии исходной нанофазы 1 больше, чем, образующейся в результате фазового превращения, нанофазы 2, то температура фазового равновесия нанообъектов по сравнению с массивными материалами уменьшается.

В случае, когда увеличение свободной энергии образующейся в результате фазового превращения нанофазы 2 больше исходной 1, то создаются термодинамические предпосылки для увеличения температуры фазового равновесия наноразмерных фаз, относительного массивного материала.

Величина изменения свободной энергии исходной и образующейся нанофазы определяется, в основном, соотношением их поверхностных энергий, формой, размером и степенью дефектности строения нанонобъектов.

УДК 621.742.4

А. В. Бабилунга, Т. В. Лысенко, И. В. Дячук Одесский национальный политехнический университет, Одесса

ИССЛЕДОВАНИЕ ГАЗОПРОНИЦАЕМОСТИ ШЛИКЕРНЫХ КЕРАМИЧЕСКИХ ЭЛЕМЕНТОВ ЛИТЕЙНЫХ ФОРМ

Критериями, определяющими эксплуатационную надежность точных отливок, являются качество поверхности, размерная точность, а также отсутствие газовых включений в теле отливки. Указанные параметры связаны, как правило, со взаимодействием металла с газовой атмосферой формы. В керамических малогазотворных формах на основе шликерной керамики, применяемых для изготовления сложнопрофильных отливок, основным источником газовыделения является термический, «работающий» за счет расширения газов в порах формы при их нагреве залитым расплавом.

Математическая модель источника термического происхождения, связанного с разогревом газа в объеме порового пространства керамической формы, имеет вид [1]:

$$J_{n} = \frac{\left[1 + \frac{1}{n+1} \left(\frac{T_{n}}{T_{H}} - 1\right)\right] \sqrt{2n(n+1)a}}{2\sqrt{t}},$$