мишметаллом увеличило его твёрдость на 12,8 %, а действие легирования и магнитного поля на 24.6 %.

УДК 669.131.5:537.34

В. А. Середенко, С. Г. Голубчик

Физико-технологический институт металлов и сплавов НАН Украины, Киев

ОСОБЕННОСТИ ПРИМЕНЕНИЯ ПОГРУЖНЫХ ЭЛЕКТРОДОВ ПРИ ЭЛЕКТРОТОКОВОЙ ОБРАБОТКЕ НЕБОЛЬШИХ ОБЪЕМОВ РАСПЛАВОВ

Подвод электротока в электропроводные расплавы электродами, погруженными под их уровень, наиболее применяемый способ в ряде процессов электрообработки, в частности, небольших масс металла (до 100 кг). Основным условием при использовании электропроводных материалов для электродов является их стойкость в агрессивных расплавах при воздействии электротока. Исключением являются технологии, в которых электроды разрушаются (расплавляются) в жидкой среде (электрошлаковое литье, ввод лигатур). Наиболее распространенная схема ввода электротока в металлические расплавы в литейных ковшах и формах – бифилярная. Диаметр (d₃) стержневых электродов – от 2 мм (нихром) до 30 мм (сталь), плотности в них электротока і от $5 \cdot 10^4$ до 1.10^7 А/м². В условиях медленного течения расплава (критерии Re<100 и Nu ≈1) в приэлектродных зонах критерий Био (Ві), характеризующий отношение внутреннего (электрода) и внешнего (расплава) термических сопротивлений, определяется как $Bi=\lambda_{D}/\lambda_{3}$, где λ_{D} и λ_{3} соответственно теплопроводности расплава и электрода. Результаты анализа электрических и термических характеристик типичных электродов приведены в табл. 1. Для определения степени неравномерности распределения электротока в электродах и связи с соотношением К₃ проведены опыты по вводу электротока в жидкий галлий. Электродами служили стержни диаметром от 1,8 до 3,0 мм при значении і до $1,2\cdot10^7$ A/м² – табл. 2. Установлено, что возникновение локального перегрева электрода и расплава в приэлектродной зоне происходит вследствие неоднородного распределения электротока по высоте электрода и характеризуется значением К_э >>1. При этом почти весь ток стекает с электрода в тонкой зоне его контакта с зеркалом расплава. Вследствие этого плотность тока в ней резко возрастает, что коррелирует по величине со значением K_3 . Так как в данной зоне электросопротивление контактного промежутка электрода и расплава велико это может приводить при высоких значениях і к существенному нагреву электрода у зеркала расплава и локальному окислению как части поверхности электрода, так и расплава. Таблица 1 — Некоторые характеристики погружных электродов при электрообработке небольших масс расплавов.

Обраба- тываемый расплав	Материал электродов	Соотношение свойств расплава и электродов		Термическая харак-
		удельное	теплопро-	теристика тела
		электросопро-	водность,	электрода
		тивление, Кэ	K_λ	
Сталь	Вольфрам	24	0,15	0,01≤К _λ ≤0,25- тонкое
	Сталь	12	0,42	0,25<Κ _λ <0,5 - между
				тонким и массивным
	Чугун	2,8	0,39	-«-
	Сталь	14,8	0,56	К _λ >0,5 - массивное
	Графит	0,2	0,25	К _λ =0,25 - тонкое
	Нихром	1,5	3,13	К _λ > 0,5 -массивное
Алюминий	Сталь	2,8	1,39	Κ _λ >0,5 -массивное
	Графит	0,04	~ 1	-«-

Таблица 2 – Характеристики электродов при вводе электротока в расплав галлия.

			Распределение	Термическая характеристика
Электроды	Кэ	K_λ	тока в электроде	тела электрода
Графит	0,034	0,4	неравномерное	тонкое-массивное
Нихром	0,27	5	-«-	массивное
Константан	0,54	1,25	-«-	-«-
Медь	15,9	0,08	равномерное	тонкое

Определено, что снижению перегрева и окисления материала электрода способствует использование электродов с $K_9 \le 1$ и $K_n \ge 1$, а также ограничение плотности электротока. При использовании электродов с $K_9 >> 1$ погружение их в расплав более чем на $2d_9$ неэффективно, т.к. электрический ток преимущественно перетекает из электрода в расплав в зоне его зеркала.