- 4. Вовлечение в процесс восстановления и (Fe,Cr)₃C, термодинамическая активность которого достаточно близка к углероду.
- 5. Образующиеся атомы Fезамещают атомы Cr в решетке совместного карбида и происходит формирование карбида ($Fe_{1-x}Cr_x$) $_3C_2$.
- 6. При выполнении указанных выше термодинамических условий (Т и С/О) возможно дальнейшее развитие процесса восстановление Cr_2O_3 совместным карбидом до $(Cr_{1-y}Fe_y)_7C_3$. Эта стадия сама достаточно сложна т.к. сопровождается параллельным протеканием нескольких реакций: газификация карбида, восстановление оксида хрома и образование нового совместного карбида.

Предложенная нами модель, безусловно, нуждается в детальной проверке как посредствам термодинамических расчетов, так и анализа продуктов восстановления на различны этапах.

УДК 621.783.233.2

Е. В. Гупало, О. Л. Ерёмина

Национальная металлургическая академия Украины (НМетАУ),

г. Днепропетровск

ЭКОНОМИЧЕСКАЯ ОЦЕНКА ЭФФЕКТИВНОСТИ ИСПОЛЬЗОВАНИЯ ТЕХНОЛОГИЧЕСКОГО КИСЛОРОДА ДЛЯ ОБОГАЩЕНИЯ ВОЗДУХА ГОРЕНИЯ В КОЛЬЦЕВОЙ ПЕЧИ

Кольцевые печи широко используются для нагрева трубных заготовок перед обработкой давлением. Известно, что одним из способов повышение энергоэффективности печей является обогащение воздуха горения технологическим кислородом. Увеличение содержания кислорода в воздухе горения уменьшает удельный выход продуктов сгорания, в результате чего снижаются потери теплоты с уходящим дымом, увеличиваются коэффициенты использования теплоты топлива и полезного действия печи [1].

С использованием метода математического моделирования выполнены исследования нагрева металла в кольцевой печи при использовании для сжигания топлива атмосферного и обогащенного кислородом воздуха [2].

В качестве объекта исследования выбрана печь производительностью 60 т/ч, предназначенная для нагрева заготовок диаметром до 0,53 м и длиной до 2 м перед прошивкой. Печь отапливается природным газом с теплотой сгорания 35,5 МДж/м³.

Размеры рабочего пространства печи: средний диаметр – 24 м, ширина пода – 4,9 м, высота – 2,04 м. Определены технико-экономические показатели печи при изменении содержания кислорода в воздухе горения в диапазоне 21 – 37 %. Установлено, что максимальная экономия топлива составляет 19,5 % (или 7,68 м 3 /т) и достигается при содержании кислорода в воздухе горения 37 %. Удельный расход технологического кислорода, обеспечивающий обогащение воздуха до 37 %, составляет 37,66 м 3 /т.

Разработаны технические решения по переводу кольцевой печи на работу на обогащенном воздухе: выполнен аэродинамический расчет воздушного тракта печи с определением конструктивных параметров кислородопровода; разработана энергоэффективная схема смешивания атмосферного воздуха с кислородом и подогрева воздуха горения в рекуператоре; предложены проектные решения по реконструкции автоматической системы управления технологическим процессом. Ориентировочная сумма капитальных затрат на внедрение мероприятий составляет 9 024 тыс. грн.

Выполнена экономическая оценка эффективности внедрения мероприятия при следующих исходных данных: фактическое время работы печи — 7000 ч/год; цена природного газа — 9005,32 грн/тыс.м³; цена технологического кислорода — 848,4 грн/тыс. м³; дисконтированный период окупаемости — 4 года; ставка дисконта принята равной банковскому проценту платы за кредит — 25 %; норма амортизации — 25 %; величина налога на прибыль — 18 %. При обосновании эффективности проекта реконструкции кольцевой печи использован метод оценки инвестиционных проектов, основанный на методологии дисконтирования денежных потоков.

Как показали расчеты, увеличение содержания кислорода в воздухе с 23 до 37 % обеспечивает изменение снижения себестоимости продукции с 8,75 до 37,21 грн/т и сокращение срока окупаемости мероприятия с 2 лет до 7,2 месяца. Максимальное снижение себестоимости продукции достигается при обогащении воздуха горения кислородом до 37 %. В этом случае реализация проектных решений обеспечивает годовой прирост чистой прибыли — 12815 тыс. грн и ежегодный чистый денежный доход 15035 тыс. грн. Чистая текущая стоимость мероприятия составляет 26483 тыс. грн. Положительное значение этой величины показывает, что предполагаемое мероприятие можно считать экономически эффективным и целесообразным.

Список литературы

- 1. *Карп И. Н.* Использование кислорода и обогащенного кислородом воздуха в нагревательных печах, колодцах, стендах разогрева сталеразливочных ковшей / И. Н. Карп, А. Н. Зайвый, Е. П. Марцевой, К. Е. Пьяных // Энерготехнологии и ресурсосбережение. 2012. № 3. С. 18-29.
- 2. *Гупало Е. В.* Использование технологического кислорода в нагревательных печах трубопрокатного цеха / Е. В. Гупало, А. С. Строменко, В. В. Яшный // Металургія : Збірник наукових праць. Вип. 1 (35). Запоріжжя, ЗДІА, 2016. С. 84-87.

УДК 66.067.8

Е. Л. Дан, А. Е. Капустин

ГВУЗ "Приазовский государственный технический университет", г. Мариуполь

ПЕРСПЕКТИВЫ ОЧИСТКИ ПРОМЫШЛЕННЫХ СТОЧНЫХ ВОД С ИСПОЛЬЗОВАНИЕМ СЛОИСТЫХ ДВОЙНЫХ ГИДРОКСИДОВ

В настоящее время экологическая проблема мирового масштаба — это ухудшение качества поверхностных вод, которые, в первую очередь являются основным источником водоснабжения для населения и функционирования предприятий различной направленности [1].

Донецкая область является одним из наиболее неблагополучных в экологическом отношении регионов не только Украины, но и Европы. Это объясняется наличием большого количества предприятий тяжелой промышленности, а в первую очередь металлургических. Общее количество выбросов загрязняющих веществ предприятиями составляет 1580 тыс. тон/год или 38 % от общего объема по Украине. Общий объем сбрасываемых в поверхностные водные объекты сточных вод составляет около 1600 млн. м³/год, а сброс недостаточно очищенных сточных вод 630 млн. м³/год [2]. Такие показатели объясняются высокой степенью износа и устаревшим оборудованием, которое используется в производственных процессах, в том числе для очистки сточных вод, а также острой необходимостью внедрения новых технологий, которые, как правило, являются дорогостоящими в реализации и эксплуатации.

В зависимости от специфики производства, в состав сточных вод может входить широкий спектр органических и неорганических загрязняющих веществ. Для