пластичности и ударной вязкости, уровень снижения вязкости и пластичности достигает 1,5 – 3,0 раза.

Незначительное повышение прочностных свойств образцов сталей микролегированных азотом и ванадием, связано с повышением прочности (микротвердости) как цементованных, так и азотированных слоев.

Список литератури

- 1. *Лахтин Ю. М., Коган Я. Д., Шпис Г. И. и др.* Теория и технология азотирования. М.: Металлургия, 1991. 320 с.
- 2. *Лахтин Ю. М., Коган Я. Д.* Азотирование стали. М.: Машиностроение, 1976. –256 с.

УДК 621.74.049

Т.В. Лысенко, Н.И. Замятин, М.П. Тур

Одесский национальный политехнический институт, Одесса

ОПТИМИЗАЦИЯ КРИСТАЛЛИЗАЦИИ ОТЛИВОК ИЗ ЛЕГКОПЛАВКИХ СПЛАВОВ ПРИ КРИСТАЛЛИЗАЦИИ В КОКИЛЕ С ОБЛИЦОВКОЙ ИЗ СИЛИКОНОВОЙ РЕЗИНЫ

Метод получения отливок в облицованный кокиль с применением в качестве облицовки силиконовой резины не позволяет в широких пределах управлять процессами кристаллизации в виду однородности покрытия. Влияние на скорость охлаждения отливки при помощи изменения толщины стенки покрытия не всегда возможно по технологическим причинам.

Для решения этой проблемы рекомендуется добавлять в резину порошки различных металлов, таких как медь, железо, алюминий и другие.

Это позволяет в широких пределах влиять на теплопроводность покрытия. Ввод порошков осуществляется следующим образом: порошок добавляем в резину, перемешиваем в течении 5 мин, вакуумируем 4 мин и затем даем отстояться 10 мин. Добавляем катализатор, перемешиваем 5 мин и заливаем получившуюся суспензию

в полость между моделью и кокилем для образования облицовки. Извлечение модели осуществляем через 24 часа.

Так, как получившаяся система у нас является гетерогенная с вкраплениями одного качества, то расчет теплопроводности производим по формуле [1]:

$$\lambda = \lambda_{M} \left[1 - \frac{\Pi_{1}}{(1 - v_{v})^{-1} - (1 - \Pi_{1})3^{-1}} \right]$$

$$v_{\mathsf{M}} = \frac{\lambda_{\mathsf{1}}}{\lambda_{\mathsf{M}}}$$
;

- теплопроводность соответственно вкрапливания и матрицы ;

 Π_2 – объемная концентрация твердой фазы;

для покрытий,

где k_1 – удельное содержание твердой фазы:

р и р₁ – плотность соответственно покрытия и твердой фазы

Список литературы

1. Специальные способы литья. Справочник / [В. А. Ефимов, Г. А. Анисович, В. Н. Бабич та ін.]. – М: Машиностроение, 1991. – 436 с.

УДК 621.742

Р.В. Лютий, Д.В. Люта

КПІ ім. Ігоря Сікорського, м. Київ

ХОЛОДНОТВЕРДНА АЛЮМОФОСФАТНА СУМІШ ДЛЯ ЛИВАРНИХ СТРИЖНІВ

Над проблемою розроблення нових зв'язувальних компонентів, які дають змогу отримати холоднотвердну суміш із високими технологічними властивостями, недефіцитних, нетоксичних і дешевих, працює ряд фірм-виробників, дослідників і ливарних підприємств, що підтверджує актуальність подібних розробок [1, 2].

У сучасних стрижневих сумішах використовують багато різних зв'язувальних компонентів, які відрізняються хімічною природою і способами зміцнення. Особливе