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1 ABSTRACT   
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National Technical 
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“KPI” 
Kyiv, Ukraine 

 

The steady-state dynamics regimes of deterministic nonideal 
systems «tank with a liquid - electric motor» are considered. The 
atlas of maps of dynamic regimes of the given system is 
constructed. For the first time existence of quasiperiodic and 
hyperchaotic attractors is revealed. 

 
 
INTRODUCTION 

The study of oscillations of  free surface of  liquid in rigid tanks was carrying out of many 
works, which detailed bibliography are in monographies [1-3]. Excepting the big research interest, the 
given problems have wide practical application in many areas of modern technics, so long as modern 
machinery, mechanisms and vehicles as constructive elements, which contain varied in form tanks 
with liquids. 

In overwhelming majority of works the oscillation of liquid in tanks are considered in, so-
called, "ideal" statement of problem. At such statement of  problem it is supposed that the source of 
excitation of oscillations of a liquid has an unlimited power. In consequence of that, probably to 
neglect feedback influence of oscillating system, in this case  tank with  liquid, on source of excitation 
of oscillations. The problems of global power savings demands the maximum minimisation of  power 
of applied sources of excitation of oscillations. It leads to that the power of  source of excitation 
becomes comparable to power consumed by oscillating system. Such situation more often takes place 
in real machines and mechanisms. In such cases application of "ideal" mathematical models can lead 
to gross errors in exposition of dynamics of systems «source of excitation of oscillations - oscillating 
subsystem». Thus there can be completely lost information about the deterministic chaos really 
existing in system [4, 5]. Because nonlinear interaction between oscillating subsystem and device of 
excitation of oscillations is one of reasons of origin of deterministic chaos. 

The major aim of given work is a construction of atlas of maps of dynamic regimes of 
deterministic dynamic system «tank with a liquid - electric motor». On the basis of the constructed 
maps the careful study of types of steady-state regimes and detection of scenarios of transition 
between various types of regimes of system can be carrying out. The researches conducted in this 
work is prolongation and development the researches begun in [4-6].  
 
1. MATHEMATICAL MODEL AND TECHNIQUE OF CARRYING OUT NUMERICAL 
CALCULATIONS 

Let's consider rigid cylindrical tank partially filled with a liquid. We will assume that the 
electric motor of limited power excite horizontal oscillations of platform of tank. The given 
hydrodynamic system is typical nonideal, in sense of Kononenko [7], deterministic dynamic system. 
As shown in [4-6] mathematical model of system «tank with a liquid - electric motor» is described by 
following system of differential equations: 
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The system (1) is a nonlinear system of differential equations of fifth order. Phase variables  

11 , qp  and 22 ,qp , accordingly amplitudes of dominant modes of oscillations of free surface of  liquid. 
The phase variable β  is proportional to velocity of rotation of shaft of the electric motor. There are 
six parametres 131 ,,,,, µα NNBA  of system (1), which are defined through physical and geometrical 
characteristics of tank with a liquid and electric motor. The detailed expositions of these parameters 
are  presented in works [4-6]. 

In works [4-6] existence of the deterministic chaos in system (1) has been proved, some types 
of chaotic attractors are classified and shown that chaotic attractors are typical attractors of the given 
system. We will notice that the detailed and all-round study of chaotic dynamics of system (1) is 
possible only by means of a series of numerical methods and algorithms. The technique of carrying 
out of such researches is described in works [4-5].  

The particular interest calls construction of maps of dynamic regimes of system (1). Maps of 
dynamic regimes represent diagrammes on plane on which axes values of arbitrary parametres of 
system which are called as bifurcation are put aside. Various colours on maps plot areas 
corresponding to various types of the steady-state dynamical regimes. The basic classification of  this 
or that type of dynamic regimes is the analysis of its spectrum of Lyapunov’s characteristic exponents 
(LCE) [4, 8]. The boundaries between areas of dynamic regimes of different types are especially 
carefully analyzed. In these cases for correct classification of type of dynamic regimes its phase 
portraits, Poincare sections and maps, distributions of spectral densities and invariant measures are 
taken in consideration.   
 
2. CONSTRUCTION OF THE ATLAS OF MAPS OF THE STEADY-STATE DYNAMIC 
REGIMES   

First, we shall consider parameters 3N  and α  as a bifurcation ones. Let's assume that, 
12;.1=A  531;.1= −B  5;.0=1µ  .1=1 −N In fig. 1 the sheet of atlas of maps of dynamic regimes of 

systems «tank with a liquid – electric motor» is shown. This map is obtained as a result of the analysis 
and data processing of computer experiments according to earlier stated technique.  

In fig. 1 areas of existence of three various types of attractors of system (1) are plotted. By 
white colour plots areas of values of parametres and 3N at α which equilibrium positions will be 
attractors of a system. The signature of their spectrum LCE looks like −〉−−−〈− ,,,, . The areas of grey 
colour correspond to limit cycles (periodic regimes) of system(1) with the signature of spectrum LCE 

−〉−−−〈 ,,,0, . Black colour plots areas of the deterministic chaos with the signature of spectrum LCE 
−〉−−〈+ ,,,0, . As from fig. 1 in some parts of a map black areas of chaotic attractors "incise" into areas 

of periodic regimes, in other parts, on the contrary, light gleams in chaotic areas which are called as 
"periodicity windows" are looked through. 

Let's consider examples of regular and chaotic attractors corresponding to various areas of a 
map. So, at values and 5.13 −=N  4.0−=α  the corresponding point in map locates in area of white 
colour. Position of the equilibrium which coordinates have values: , 0.6991 =p  0.214,=(0)1q  

-1.607,=(0)β  0= 22 =qp  will be a system attractor. At 13 −=N , 48.0−=α  and at ,72.03 −=N  
3.0−=α  corresponding points in the map locate in area of grey colour. Limit cycles will be system 

attractors in this case. Projections of phase portraits of the given cycles are shown in fig. 2a and 2b. 
Both cycles represent closed lines in a phase space, however the second of these cycles has more 
complicated, multistage structure. At last at ,4.03 −=N  3.0−=α  the  corresponding point locates in 



 
191 

black area of a map of dynamic regimes. In this case the system (1) has a chaotic attractor. Projection 
of a phase portrait of given chaotic attractor are shown in fig. 2c. 
 

 
Fig. 1. Sheet of maps of dynamic regimes at changing of parametres 3N and α  . 
 

             
 

a                                                                        b 
 

 
 

c 
Fig. 2. Projections of limit cycles phase portraits at -1,3 =N  -0.48=α (a); and at -0.72,3 =N  

-0.3=α (b); of chaotic attractor at -0.4,3 =N  -0.3=α (c). 
 

Further we will assume that 1.03 −=N . Parameters 1N  and α  we will choose as bifurcation 
parameters. The values A , B and 1µ  it is considered by the invariable. In fig. 3a the new sheet of the 
atlas of maps of dynamic regimes in which areas of  four types of dynamic regimes are plotted. By 
white colour denote areas in space of parameters in which in system exist the equilibrium positions. 
The areas of light grey colour correspond to limit cycles of system (1). Dark grey colour areas 
corresponds to areas of chaotic attractors. And, at last, areas of black colour  correspond to areas of 
quasiperiodic regimes with the signature of spectrum LCE >−−−< ,,,0,0 .  In fig. 3b the increased 
fragment of the constructed map is shown. On this increased fragment the black area of quasiperiodic 
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attractors, which places near to boundary of areas of existence of regular and chaotic attractors, is 
clear visible. We will notice that areas in space of parameters of system (1) in which  attractors of 
system are limit toruses have not been discovered in the previous researches of system (1). Thus 
quasiperiodic attractors are new type of attractors for the given systems. 

 

                        
a                                                                          b 

Fig. 3. Sheet of maps of dynamic regimes at changing of parametres 1N and α . 
 

Let's consider examples of attractors of system (1) which exist in various areas of a map from 
fig. 3. So in fig. 4a the projection of phase portrait of quasiperiodic attractor (limit torus), constructed 
at values 045.0,32.01 −=−= αN  is shown. In fig. 4b the limit cycle projection (resonance cycle in 
torus), constructed at values 045.0,314.01 −=−= αN  is shown. At last in fig. 4c the projection of one 
of chaotic attractors of system (1), constructed at values 045.0,3131.01 −=−= αN  is shown. In this 
case transition to chaos through destruction of a quasiperiodic attractor is realised.   

 

                 
a                                                b                                               c 

Fig .4. Projections of phase portraits of quasiperiodic attractor at -0.32,1 =N -0.045=α (a); 
limit cycle at -0.314,1 =N -0.045=α (b); chaotic attractor at -0.3131,3 =N -0.045=α (c). 

 
Now we will assume that 113 −== NN . Parameters 1µ  and α  we will choose as bifurcation 

parameters. The values A , B  it is considered by the invariable. In fig. 5 (a-b) a few fragments of new 
sheet of the atlas of maps of dynamic regimes are plotted. The areas of dynamic regimes of five types 
be present in given maps.  By white colour areas of existence of positions of equilibrium are plotted. 
The areas of light grey colour correspond to periodic regimes of system. By grey colour notes areas of 
existence of chaotic attractors. Areas of quasiperiodic regimes are designated by black colour. And at 
last, areas of existence of hyperchaotic attractors are plotted by dark grey colour. The signature of 
spectrum LCE of hyperchaotic attractors looks like −〉−+〈+ ,0,,, . So  two positive exponents are at 
spectrum of hyperchaotic attractors. We will notice that hyperchaotic attractors  not discovered at 
earlier researches of system (1). 

Let's consider some of hyperchaotic attractors existing in system (1). So in fig. 6a the projection 
of  phase portrait of hyperchaotic attractor constructed at values 04.0,125.41 −== αµ  is shown. In fig. 
6b  the projection hyperchaotic attractor, constructed at values 0403.0,125.41 −== αµ  is shown. Phase 
portraits of these attractors noticeably differ one from another. First of all the hyperchaotic attractor 
presented in fig. 6b differs from a hyperchaotic attractor presented in fig. 6a appreciable increasing of 
volume of its area of localisation in a phase space. In fig. 6c the increased fragment of a central part of 
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an attractor from fig. 6b. Apparently from fig. 6c in this fragment contours of a hyperchaotic attractor 
presented in fig. 6a are accurately looked through. Such qualitative similarity of a fragment of one 
attractor to other attractor has allowed to make clear existing in system the transition of type of 
«hyperchaos - hyperchaos» . It was possible to prove that this transition is realised under the scenario 
of  intermittency generalising the known scenario of Pomeau and Manneville. And if in works [4, 5] it 
was possible to generalise the scenario of Pomeau and Manneville for type of transition of «chaos - 
chaos», now it succeed to be generalised and on type of transition of «hyperchaos - hyperchaos».  

 

 
 

 
Fig. 5a Fragments of sheet of the atlas of maps of dynamic regimes at changing of 

parametres 1µ and α . 
 

 

 

 
Fig. 5b. Fragments of sheet of the atlas of maps of dynamic regimes at changing of 

parametres 1µ and α . 
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a                                                                   b 
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Fig 6 Projections of hyperchaotic attractors phase portraits at 4.125,1 =µ  -0.04=α (a) and at 
4.125,1 =µ  -0.0403=α (b-c). 

 
CONCLUSIONS 

Thus, in this work maps of dynamic regimes of nonideal deterministic system "tank with a 
liquid-electric motor" for the first time are constructed. The constructed maps are of great importance 
for detailed research of regular and chaotic attractors of the given system. The knowledge of such 
maps allows essentially abridge duration of time of carrying out of natural experimental researches of 
dynamic systems of this kind. Also in space of parameters of system for the first time the discovered 
areas of existence of hyperchaotic and quasiperiodic attractors.  
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