ИССЛЕДОВАНИЕ ТЕХНОЛОГИИ УДОБРЕНИЙ НА ОСНОВЕ ФОСФАТ-ГЛАУКОНИТОВОГО КОНЦЕНТРАТА УКРАИНЫ

Рыщенко И.М., Савенков А.С., Белогур И.С.

Национальный технический университет «Харьковский политехнический институт»,

г. Харьков

Значительная часть балансовых фосфатных руд Украины представлена бедными, низкокачественными рудами. Среднее содержание P_2O_5 в фосфатных рудах составляет 5-15%.

Для разработки технологии азотно-фосфорных удобрений использовалось сырье в виде фосфат-глауконитового концентрата Донецкого бассейна.

Из существующих способов переработки наибольший интерес представляет азотно-кислотный метод, дающий возможность на стадии подготовки сырья извлечь из низкокачественных руд значительную часть кислоторастворимых примесей.

1 Получения высококачественных удобрений требует удаления из азотнокислотной вытяжки (АКВ) нитрата кальция. Наличие нитрата кальция ухудшает физико-механические свойства удобрения. Для уменьшения содержания нитрата кальция в АКВ была применена технология с использованием серной кислоты и сульфата аммония. Осаждение кальция из АКВ сульфат ионом осуществляется с выделением в твердую фазу CaSO₄.

2 Для уменьшения концентрации нитрата кальция, был организован стадийный ввод серной кислоты. Для первой стадии была достигнута степень конверсии $Ca(NO_3)_2$ в сульфат кальция равная 26-28%. Во втором вводе серной кислоты при содержании в АКВ нитрата кальция в интервале 24-25% масс. степень конверсии $Ca(NO_3)_2$ составила 40-45%.

Результаты проведенной работы, показали, что двойная обработка улучшает качество удобрения. Согласно разработанному способу, при первом вводе серной кислоты, удаляется 60% $Ca(NO_3)_2$ из AKB, а при втором вводе происходит полное его удаление, что значительно улучшает нейтрализацию азотнокислотного раствора.

При нейтрализации АКВ аммиачной водой $NH_3 \cdot H_2O$, при одновременном вводе серной кислоты, получен раствор следующего состава, % масс.: $NH_4NO_3\sim35,6-38,3$, $(NH_4)_2SO_4\sim5,2-7,5$, $CaHPO_4\sim4,8-5,3$, $Mg_3(PO_4)_2\sim0,2-0,4\%$, $Ca_5(OH)(PO_4)_3\sim4,3-11,5$, $FePO_4\cdot2H_2O\sim3.0-3.5$, Плотность (кг/м³): исходного раствора 2604-3920, полученной суспензии 4078-4766.

В результате было получено NP-удобрения с высоким содержанием питательных элементов.