ПРОЕКТИРОВАНИЕ ТЕПЛООБМЕННОЙ СЕТИ ДЛЯ СНИЖЕНИЯ ЗАГРЯЗНЕНИЙ ПРИ ПОДОГРЕВЕ НЕФТИ

Капустенко П.А., Арсеньева О.П., Юзбашьян А.П.

Национальный технический университет «Харьковский политехнический институт»,

г. Харьков

Нефтеперерабатывающие заводы являются крупнейшими потребителями энергетических ресурсов. Снижение потребления можно достичь путем проектирования технологических схем производства на основе современных методов интеграции процессов (пинч-анализа) с использованием современного высокоэффективного пластинчатого теплообменного оборудования.

Актуальность рассмотренной темы обусловлена тем, что одним из факторов, который должным образом не учитывается в пинч-проектировании — влияние загрязнений. Это серьезное упущение, особенно при, использовании теплообменников для потоков с высокой температурой. Также надо учитывать, что производительность сети в чистых условиях будет значительно отличаться с течением времени из-за динамического роста отложений, вплоть до полной остановки производства.

В представленной работе рассматривается схема подогрева сырой нефти, взятой из работы [1]. В качестве утилитных теплообменников были приняты теплообменники типа компаблок фирмы Альфа Лаваль.

Используя модель, описывающую механизм образования отложений [2] на основе прогнозирования уровня образования отложений как разницы между интенсивностью осаждения отложений и интенсивностью удаления отложения, было определено, что из 7 установленных теплообменников, только на 3 отмечается рост загрязнений. В остальных 4 теплообменниках, увеличение скорости движения теплоносителя в каналах, способствовало росту касательного напряжения на стенках теплопередающей поверхности, что препятствовало образованию загрязнений.

Изучив интенсивность осаждения на трех данных позициях, был предложен график по очистке теплообменников.

Литература:

- 1. Francesco Coletti. Effects of fouling on performance of retrofitted heat exchanger networks: A thermo-hydraulic based analysis / Francesco Coletti, Sandro Macchietto, Graham T. Polley// Computers and Chemical Engineering. 2011.–35 907-917.
- 2. Mengyan Yang. Fouling thresholds in bare tubes and tubes fitted with inserts/ Mengyan Yang, Barry Cittenden // Applied Energy. -2012.-89.-P.67-73.